Computational Complexity of the Extended Minimum Cost Homomorphism Problem on Three-Element Domains
نویسنده
چکیده
In this paper we study the computational complexity of the extended minimum cost homomorphism problem (Min-Cost-Hom) as a function of a constraint language, i.e. a set of constraint relations and cost functions that are allowed to appear in instances. A wide range of natural combinatorial optimisation problems can be expressed as extended Min-Cost-Homs and a classification of their complexity would be highly desirable, both from a direct, applied point of view as well as from a theoretical perspective. The extended Min-Cost-Hom can be understood either as a flexible optimisation version of the constraint satisfaction problem (CSP) or a restriction of the (general-valued) valued constraint satisfaction problem (VCSP). Other optimisation versions of CSPs such as the minimum solution problem (Min-Sol) and the minimum ones problem (Min-Ones) are special cases of the extended Min-Cost-Hom. The study of VCSPs has recently seen remarkable progress. A complete classification for the complexity of finite-valued languages on arbitrary finite domains has been obtained Thapper and Živný [STOC’13]. However, understanding the complexity of languages that are not finitevalued appears to be more difficult. The extended Min-Cost-Hom allows us to study problematic languages of this type without having to deal with with the full generality of the VCSP. A recent classification for the complexity of three-element Min-Sol, Uppman [ICALP’13], takes a step in this direction. In this paper we generalise this result considerably by determining the complexity of three-element extended Min-Cost-Hom. 1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.2.2 Nonnumerical Algorithms and Problems, F.4.1 Mathematical Logic
منابع مشابه
Computational Complexity of the Minimum Cost Homomorphism Problem on Three-Element Domains
In this paper we study the computational complexity of the (extended) minimum cost homomorphism problem (Min-Cost-Hom) as a function of a constraint language, i.e. a set of constraint relations and cost functions that are allowed to appear in instances. A wide range of natural combinatorial optimisation problems can be expressed as Min-Cost-Homs and a classification of their complexity would be...
متن کاملBounded Tree-Width and CSP-Related Problems
We study the complexity of structurally restricted homomorphism and constraint satisfaction problems. For every class of relational structures C, let LHOM(C, _) be the problem of deciding whether a structure A ∈ C has a homomorphism to a given arbitrary structure B, when each element in A is only allowed a certain subset of elements of B as its image. We prove, under a certain complexity-theore...
متن کاملMinimum Cost and List Homomorphisms to Semicomplete Digraphs
For digraphs D and H, a mapping f : V (D)→V (H) is a homomorphism of D to H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). Let H be a fixed directed or undirected graph. The homomorphism problem for H asks whether a directed or undirected graph input digraph D admits a homomorphism to H. The list homomorphism problem for H is a generalization of the homomorphism problem for H, where every vertex x ∈ V (...
متن کاملMinimum Cost Homomorphisms of Digraphs
For digraphs D and H , a mapping f : V (D)→V (H) is a homomorphism of D to H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). For a fixed directed or undirected graph H and an input graph D, the problem of verifying whether there exists a homomorphism of D to H has been studied in a large number of papers. We study an optimization version of this decision problem. Our optimization problem is motivated by ...
متن کاملThe Dichotomy of Minimum Cost Homomorphism Problems for Digraphs
The minimum cost homomorphism problem has arisen as a natural and useful optimization problem in the study of graph (and digraph) coloring and homomorphisms: it unifies a number of other well studied optimization problems. It was shown by Gutin, Rafiey, and Yeo that the minimum cost problem for homomorphisms to a digraph H that admits a so-called extended MinMax ordering is polynomial time solv...
متن کامل